

FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

Requirements of an IT System 1

The end goal of a project is to deliver a high-quality product precisely as the customer requested. Functional requirements are the primary way that a customer communicates their needs to the project team. Functional requirements help to keep project team moving in the right direction.

Understanding the difference between functional and non-functional requirements will help both the client and the IT supplier as they will understand their requirements clearly. This clarity leads to scope refinement, optimised cost, and finally a happy customer.

If there is one thing any project must have to prevent failure, it is a sensible and comprehensive collection of both the functional and non-functional requirements.

1.1 The difference between Functional and Non-functional requirements

The official definition of a 'functional requirement' is that it essentially specifies something the system should do.

Simply put, the difference is that non-functional requirements describe how the system works, while functional requirements describe what the system should do.

The definition for a non-functional requirement is that it essentially specifies how the system should behave and that it is a constraint upon the system's behaviour. One could also think of non-functional requirements as to quality attributes for a system.

If the functionality of the product is not dependent on non-functional requirements, then why are they important? The answer is in-usability. Non-functional requirements affect the user experience as they define a system's behaviours, features, and general characteristics.

Non-functional requirements, when defined and executed well, will help make the system easy to use and enhance performance.

1.2 Basically, functional requirements can be divided into 4 groups which are

- 1.2.1 Business requirements: They contain the goal, such as an order system, an online catalogue, or a physical product. It can also include things like approval workflows and authorisation levels.
- 1.2.2 Administrative functions: They are the routine things the system will do, such as reporting.
- 1.2.3 User requirements: They are what the system's user can do, such as place an order or browse the online catalogue.
- 1.2.4 System requirements: These are things like software and hardware specifications, system responses, or system actions.

1.3 Once the functional requirements are defined, then it's time to think about the nonfunctional requirements, such as

- Usability: This focuses on the appearance of the user interface and how people interact with it. • What colour are the screens? How big are the buttons?
- Reliability / Availability: What are the uptime requirements? Does it need to function 24/7/365? •
- Scalability: As needs grow, can the system handle it? For physical installations, this includes • replacement hardware or space to install it in the future.
- Performance: How fast does it need to operate? •
- Supportability: Is support provided in-house, or is remote accessibility for external resources required? Long term viability of outsourcers.

- Security: What are the security requirements, both for the physical installation and from a
- cyber-perspective?
- Capacity: Disk space, human resources, memory, etc. requirements.
- **Recoverability:** How quick can you recover from a disaster, and what are the requirements.
- Maintainability: Upgrades and maintenance.
- Serviceability: Long term service defined by SLA
- **Regulatory**: Does it meet all regulatory requirements, like POPIA
- **Manageability**: How do you manage the software, including contractual agreements, SLA's, licenses, etc.
- **Data Integrity:** How well the software system maintains the data in terms of accuracy, authenticity, and without corruption.
- **Usability**: How easily the user can learn, operate, prepare inputs and interpret outputs through interaction with a software system.
- **Interoperability and Integration**: Refers to the basic ability of computerised systems to connect and communicate with one another readily.
- Architecture: Does it fit into the NWU-IT Architecture. Cloud, on-prem, hybrid, SAAS,
- Licensing: Are the terms explicit and is it understood? Who will manage the licenses?
- **SLA's:** For all system development projects, there should be an SLA between client and supplier.
- Contracts: Are there contracts involved? Legal office involved?
- **The total cost of ownership**: Cost is not just about the initial purchase and implementation. There is a lifecycle cost that could be ten times the initial cost.